

Uncertainty Quantification in Transfer Printing

Graduate Student Fellows: Faculty Advisors: **HUANYU (LARRY) CHENG ZHEN JIANG**

WEI CHEN YONGGANG HUANG Academic Disciplines: **MECHANICAL ENGINEERING CIVIL & ENVIRONMENTAL ENGINEERING**

PS&ED Cluster 2011-2012 June 4, 2012

OBJECTIVE

Establish analytically the scaling law for shear-enhanced transfer printing Optimize the design parameters in the process of transfer printing for stretchable and flexible electronics Enable a cost-effective fabrication and pave the way for potential commercialization

Shear-Enhanced Transfer Printing Adhesion Retrieval: Initiate Rapid retraction Γ_{1} contact Γ_{2} donor Align to **Printing:** target Slow Contact: retraction apply shear Γ_1' Γ_3 Conventional: $\Gamma_3 > \Gamma_1' = \Gamma_1 > \Gamma_2$ Shear-enhanced: $\Gamma_3 > \Gamma_1' << \Gamma_1 > \Gamma_2$

Continuous Roll-to-Roll Application

Design Problem in Roll-to-Roll Application

Uncertainty Quantification & Optimization

