Validation and Prediction of Single Point Incremental Forming (SPIF), PSED Cluster 2009-2010

Graduate Student Fellows: **RAJIV MALHOTRA** PAUL ARENDT

Faculty Advisors: WEI CHEN. DAN APLEY **JIAN CAO**

om l

1

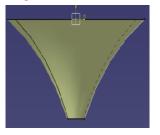
Т

Academic Disciplines: MECHANICAL ENGINEERING. INDUSTRIAL ENGINEERING AND MANAGEMENT SCIENCES June 03, 2010

Tool

Single Point Incremental Forming (SPIF)

Research Objective


- Calibrate the fracture model to predict formability in SPIF using FEA 1)
- Obtain knowledge about uncertainties in simulations and experiments in SPIF 2)
- Assess the predictive capability of FEA simulations for SPIF 3)

Experiments

Experimental Prediction

Variable Inputs

Incremental Depth (Δz)

Incremental depth (Δz): Increments by which tool goes down in z direction

Failure:

Uncertainty Quantification and Prediction

Calibration and Bias-Correction Probabilistic Model Formulation

(Kennedy and O'Hagan 2001)

Computer Model

Lack of computer data

Gaussian Process (GP) Model

 $\mathbf{y}^{e}(\mathbf{x}) = \mathbf{y}^{m}(\mathbf{x}, \mathbf{\theta}) + \mathbf{\delta}(\mathbf{x}) + \mathbf{\varepsilon}$

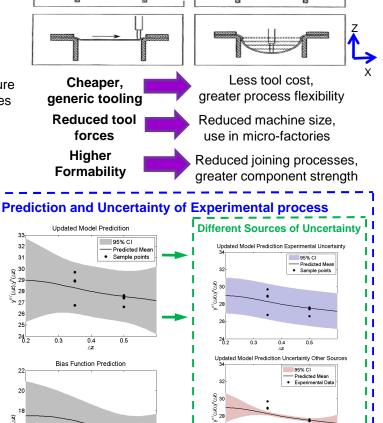
Unknown Parameters

m and β

- Controlled by Δz
- Tested by forming funnel shapes at different Δz

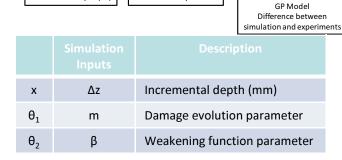
Experimental Error

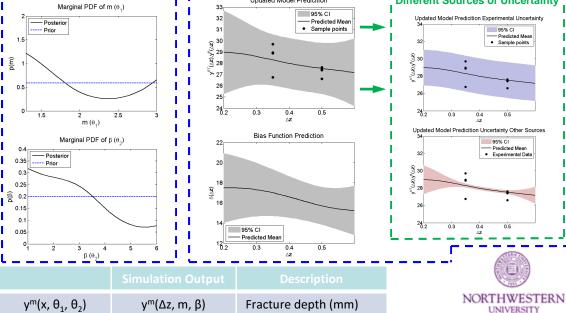
Bias Correction Function


Lack of experimental data

Fracture Model

I Probability Distribution of


Calibration Parameters


Fracture envelope depends on pressure and on shear modes of deformation

11

11

