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/—Objectiveg\
Data bias is a ubiquitous but often

overlooked problem that exists in most
materials databases. Our objective is to
develop computational methods that
quantify the level of bias in datasets and
mitigate bias by suggesting new data
entries. This method aims to improve the
quality of data to facilitate predictive

Qwodeling and design of materials. /

———Motivation ———
Where materials informatics researchers get data
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Generate data

Usually “good-performing”in
terms of certain application
\

Built upon known structural
prototypes (not balanced)
)

Data resources are biased, affecting

Mitigate / tune data bias?
data-driven modeling and design

Example: structure-stability bias among
8 common metal elements in OQMD
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Method

Information entropy

H(Y) = — fy p) Inp(y) dy

Quantifies the diversity of Y > bias metric

Maximizing H(AE) in all crystal

systems will reduce bias
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Monte Carlo sampling = uncertainty in H:
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Results
All stable orthorhombic and other
‘ randomly selected data (1,000 in total)
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H(AE) change in sampling process

Information entropy evolution
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Unlabeled samples run out.

wcessfully fixed artificially created bias.
Future Work ———
Examine the effect of structure-stability

bias on modeling other properties.

* Apply the method to guide materials
database construction

* Tune data bias according to the need

Design optimization

Biased towards target
for specific properties

|| Accurate ML models;
Low Bias better exploration
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