
Computational Search for New Quaternary Heusler Compounds, PSED Cluster 2015-2016

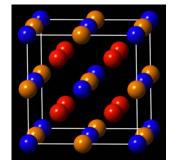
Graduate Student Fellows: Kyoungdoc Kim (MSE), Amar Krishna (EECS), Collaborators: Logan Ward, Jiangang He Faculty Advisors: Drs. Ankit Agrawal (EECS), Chris Wolverton (MSE), Peter Voorhees (MSE)

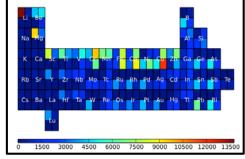
RESEARCH OBJECTIVE

The objective of this PSED project is to develop a model combined with Machine Learning (ML) algorithm and Density Functional Theory (DFT) calculation to discover new potential quaternary Heusler compounds (QHs) among ~3,000,000 QHs by combinatorially-substituting elements.

• 73(elements)C₄x3 = ~3,000,000 QHs

Search new stable quaternary Heuslers (QHs).


Rank	Attributes (#274)	Content	Number of compounds	
1 2	mean., var., min. of	ML prediction	827	
3	effective coordination	(Hull distance < 0.1 eV/atom)		
4	max. number of d election	In OQMD / stable	700 / 00 /	
5	and Mandeleev	phases in OQMD	762 / 204	
6	range (maxmin.) of atomic weight	Not in OQMD	65	
7	min. of bond length var.			


- Important: Local chemistry (#valence electrons, atomic volume)
- Prediction (ML): 65 new QHs with potentially stable
- Need to perform DFT calculations for 65 QHs.
- Currently, we found **new stable phase (LiAlZnAg)**, which is not included in the training data set (OQMD).

Development of Machine Learning (ML) model

#	Data set Data t (eV/at			Total numbers	10CV, MAE (eV/atom)	
А	Quaternary Heuslers	Formatior	n energy	~90,000	0.0455	
В	Ternary Heuslers	Formatior	Formation energy		0.0672	
С	Ternary / 0.9 Quaternary	Formation	Formation energy		0.0619	
D	Quaternary Heuslers	Hull dis	tance	~90,000	0.0442	
Alg	jorithm	10CV, MAE (eV/atom)	• Bes	Best performance		
RE	EPTree	0.0673		 Training set: QHs Algorithm: Random Forest 		
Decis	ion Stump	0.178				
Rand	om Forest	0.0442	O Algorithm. Kandom Forest			

Challenges and Difficulties

Chemical formula of Heusler compound: X₂YZ The frequency of chosen elements in QH training data sets on four sites (X₂YZ)

- Dataset is biased towards compounds with 3d transition metals (conventional alloying elements) with Li.
- Issue: These are not representative of the entire search space UNIVERSITY